Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.899
Filtrar
1.
J Inorg Biochem ; 255: 112535, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38527404

RESUMO

Human mitoNEET (mNT) and CISD2 are two NEET proteins characterized by an atypical [2Fe-2S] cluster coordination involving three cysteines and one histidine. They act as redox switches with an active state linked to the oxidation of their cluster. In the present study, we show that reduced glutathione but also free thiol-containing molecules such as ß-mercaptoethanol can induce a loss of the mNT cluster under aerobic conditions, while CISD2 cluster appears more resistant. This disassembly occurs through a radical-based mechanism as previously observed with the bacterial SoxR. Interestingly, adding cysteine prevents glutathione-induced cluster loss. At low pH, glutathione can bind mNT in the vicinity of the cluster. These results suggest a potential new regulation mechanism of mNT activity by glutathione, an essential actor of the intracellular redox state.


Assuntos
Proteínas Ferro-Enxofre , Humanos , Proteínas Ferro-Enxofre/química , Oxirredução , Compostos de Sulfidrila , Cisteína/metabolismo , Glutationa/metabolismo , Homeostase , Proteínas Mitocondriais/química
2.
J Biol Chem ; 300(3): 105745, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354784

RESUMO

The NEET proteins, an important family of iron-sulfur (Fe-S) proteins, have generated a strong interest due to their involvement in diverse diseases such as cancer, diabetes, and neurodegenerative disorders. Among the human NEET proteins, CISD3 has been the least studied, and its functional role is still largely unknown. We have investigated the biochemical features of CISD3 at the atomic and in cellulo levels upon challenge with different stress conditions i.e., iron deficiency, exposure to hydrogen peroxide, and nitric oxide. The redox and cellular stability properties of the protein agree on a predominance of reduced form of CISD3 in the cells. Upon the addition of iron chelators, CISD3 loses its Fe-S clusters and becomes unstructured, and its cellular level drastically decreases. Chemical shift perturbation measurements suggest that, upon cluster oxidation, the protein undergoes a conformational change at the C-terminal CDGSH domain, which determines the instability of the oxidized state. This redox-associated conformational change may be the source of cooperative electron transfer via the two [Fe2S2] clusters in CISD3, which displays a single sharp voltammetric signal at -31 mV versus SHE. Oxidized CISD3 is particularly sensitive to the presence of hydrogen peroxide in vitro, whereas only the reduced form is able to bind nitric oxide. Paramagnetic NMR provides clear evidence that, upon NO binding, the cluster is disassembled but iron ions are still bound to the protein. Accordingly, in cellulo CISD3 is unaffected by oxidative stress induced by hydrogen peroxide but it becomes highly unstable in response to nitric oxide treatment.


Assuntos
Proteínas Ferro-Enxofre , Proteínas Mitocondriais , Óxido Nítrico , Humanos , Peróxido de Hidrogênio/metabolismo , Ferro/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Óxido Nítrico/metabolismo , Oxirredução , Estresse Oxidativo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Células HEK293 , Estabilidade Proteica
3.
Nature ; 626(8000): 874-880, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297121

RESUMO

Stress response pathways detect and alleviate adverse conditions to safeguard cell and tissue homeostasis, yet their prolonged activation induces apoptosis and disrupts organismal health1-3. How stress responses are turned off at the right time and place remains poorly understood. Here we report a ubiquitin-dependent mechanism that silences the cellular response to mitochondrial protein import stress. Crucial to this process is the silencing factor of the integrated stress response (SIFI), a large E3 ligase complex mutated in ataxia and in early-onset dementia that degrades both unimported mitochondrial precursors and stress response components. By recognizing bifunctional substrate motifs that equally encode protein localization and stability, the SIFI complex turns off a general stress response after a specific stress event has been resolved. Pharmacological stress response silencing sustains cell survival even if stress resolution failed, which underscores the importance of signal termination and provides a roadmap for treating neurodegenerative diseases caused by mitochondrial import defects.


Assuntos
Mitocôndrias , Proteínas Mitocondriais , Mutação , Doenças Neurodegenerativas , Estresse Fisiológico , Ubiquitina-Proteína Ligases , Apoptose/efeitos dos fármacos , Ataxia/genética , Sobrevivência Celular/efeitos dos fármacos , Demência/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Estabilidade Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos
4.
J Biomol Struct Dyn ; 42(3): 1307-1318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37139557

RESUMO

Ubiquitin specific protease 30 (USP30) has been attributed to mitochondrial dysfunction and impediment of mitophagy in Parkinson's disease (PD). This happens once ubiquitin that supposed to bind with deformed mitochondria at the insistence of Parkin, it's been recruited by USP30 via the distal ubiquitin binding domain. This is a challenge when PINK1 and Parkin loss their functions due to mutation. Although, there are reports on USP30s' inhibitors but no study on the repurposing of inhibitors approved against MMP-9 and SGLT-2 as potential inhibitors of USP30 in PD. Thus, the highlight therein, is to repurpose approved inhibitors of MMP-9 and SGLT-2 against USP30 in PD using extensive computational modelling framework. 3D structures of Ligands and USP30 were obtained from PubChem and protein database (PDB) servers respectively, and were subjected to molecular docking, ADMET evaluation, DFT calculation, molecular dynamics simulation (MDS) and free energy calculations. Out of the 18 drugs, 2 drugs showed good binding affinity to the distal ubiquitin binding domain, moderate pharmacokinetic properties and good stability. The findings showed canagliflozin and empagliflozin as potential inhibitors of USP30. Thus, we present these drugs as repurposing candidates for the treatment of PD. However, the findings in this current study needs to be validated experimentally.Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Metaloproteinase 9 da Matriz , Simulação de Acoplamento Molecular , Reposicionamento de Medicamentos , Proteínas Quinases/metabolismo , Proteínas Mitocondriais/química , Tioléster Hidrolases/química , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/metabolismo
5.
Proteins ; 92(5): 583-592, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38146092

RESUMO

Mitochondria play a central role in energy production and cellular metabolism. Mitochondria contain their own small genome (mitochondrial DNA, mtDNA) that carries the genetic instructions for proteins required for ATP synthesis. The mitochondrial proteome, including the mitochondrial transcriptional machinery, is subject to post-translational modifications (PTMs), including acetylation and phosphorylation. We set out to determine whether PTMs of proteins associated with mtDNA may provide a potential mechanism for the regulation of mitochondrial gene expression. Here, we focus on mitochondrial ribosomal protein L12 (MRPL12), which is thought to stabilize mitochondrial RNA polymerase (POLRMT) and promote transcription. Numerous acetylation sites of MRPL12 were identified by mass spectrometry. We employed amino acid mimics of the acetylated (lysine to glutamine mutants) and deacetylated (lysine to arginine mutants) versions of MRPL12 to interrogate the role of lysine acetylation in transcription initiation in vitro and mitochondrial gene expression in HeLa cells. MRPL12 acetyl and deacetyl protein mimics were purified and assessed for their ability to impact mtDNA promoter binding of POLRMT. We analyzed mtDNA content and mitochondrial transcript levels in HeLa cells upon overexpression of acetyl and deacetyl mimics of MRPL12. Our results suggest that MRPL12 single-site acetyl mimics do not change the mtDNA promoter binding ability of POLRMT or mtDNA content in HeLa cells. Individual acetyl mimics may have modest effects on mitochondrial transcript levels. We found that the mitochondrial deacetylase, Sirtuin 3, is capable of deacetylating MRPL12 in vitro, suggesting a potential role for dynamic acetylation controlling MRPL12 function in a role outside of the regulation of gene expression.


Assuntos
Acetilação , Lisina , Proteínas Ribossômicas , Transcrição Gênica , Humanos , Proteínas de Ciclo Celular/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Células HeLa , Lisina/metabolismo , Proteínas Mitocondriais/química , Proteínas Nucleares/genética , Processamento de Proteína Pós-Traducional , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
6.
J Phys Chem B ; 127(45): 9685-9696, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37921649

RESUMO

The uncoupling protein 1 (UCP1) dissipates the transmembrane (TM) proton gradient in the inner mitochondrial membrane (IMM) by leaking protons across the membrane and producing heat in the process. Such a nonshivering production of heat in the brown adipose tissue can combat obesity-related diseases. UCP1-associated proton leak is activated by free fatty acids and inhibited by purine nucleotides. The mechanism of proton leak and the binding sites of the activators (fatty acids) remain unknown, while the binding site of the inhibitors (nucleotides) was described recently. Using molecular dynamics simulations, we generated a conformational ensemble of UCP1. Using metadynamics-based free energy calculations, we obtained the most likely ATP-bound conformation of UCP1. Our conformational ensemble provides a molecular basis for a breadth of prior biochemical data available for UCP1. Based on the simulations, we make the following testable predictions about the mechanisms of activation of proton leak and proton leak inhibition by ATP: (1) R277 plays the dual role of stabilizing ATP at the binding site for inhibition and acting as a proton surrogate for D28 in the absence of a proton during proton transport, (2) the binding of ATP to UCP1 is mediated by residues R84, R92, R183, and S88, (3) R92 shuttles ATP from the E191-R92 gate in the intermembrane space to the nucleotide binding site and serves to increase ATP affinity, (4) ATP can inhibit proton leak by controlling the ionization states of matrix facing lysine residues such as K269 and K56, and (5) fatty acids can bind to UCP1 from the IMM either via the cavity between TM1 and TM2 or between TM5 and TM6. Our simulations set the platform for future investigations into the proton transport and inhibition mechanisms of UCP1.


Assuntos
Canais Iônicos , Prótons , Canais Iônicos/química , Proteína Desacopladora 1/metabolismo , Proteínas Mitocondriais/química , Ácidos Graxos/metabolismo , Nucleotídeos/metabolismo , Trifosfato de Adenosina
7.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834108

RESUMO

In mitochondria, the major subunits of oxidative phosphorylation complexes are translated by the mitochondrial ribosome (mito-ribosome). The correct insertion and assembly of these subunits into the inner mitochondrial membrane (IMM) are facilitated by mitochondrial oxidase assembly protein 1 (Oxa1) during the translation process. This co-translational insertion process involves an association between the mito-ribosome and the C-terminus of Oxa1 (Oxa1-CTD) Nuclear magnetic resonance (NMR) methods were mainly used to investigate the structural characterization of yeast Oxa1-CTD and its mode of interaction with the E. coli 70S ribosome. Oxa1-CTD forms a transient α-helical structure within the residues P342-Q385, which were reported to form an α-helix when combining with the ribosome. Two conserved contact sites that could interact with the ribosome were further identified. The first site was located on the very end of the N-terminus (V321-I327), and the second one encompassed a stretch of amino acid residues I348-Q370. Based on our discoveries and previous reports, a model has been proposed in which Oxa1-CTD interacts with ribosomes, accompanied by transient-to-stable transitions at the second contact site. These observations may enhance our understanding of the potential role of Oxa1-CTD in facilitating the assembly of oxidative phosphorylation complexes and provide insight into the structural characteristics of Oxa1-CTD.


Assuntos
Escherichia coli , Proteínas Mitocondriais , Ribossomos , Saccharomyces cerevisiae , Escherichia coli/genética , Escherichia coli/metabolismo , Espectroscopia de Ressonância Magnética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo
8.
J Struct Biol ; 215(3): 108008, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37543301

RESUMO

Mitochondria are essential organelles that produce most of the energy via the oxidative phosphorylation (OXPHOS) system in all eukaryotic cells. Several essential subunits of the OXPHOS system are encoded by the mitochondrial genome (mtDNA) despite its small size. Defects in mtDNA maintenance and expression can lead to severe OXPHOS deficiencies and are amongst the most common causes of mitochondrial disease. The mtDNA is packaged as nucleoprotein structures, referred to as nucleoids. The conserved mitochondrial proteins, ARS-binding factor 2 (Abf2) in the budding yeast Saccharomyces cerevisiae (S. cerevisiae) and mitochondrial transcription factor A (TFAM) in mammals, are nucleoid associated proteins (NAPs) acting as condensing factors needed for packaging and maintenance of the mtDNA. Interestingly, gene knockout of Abf2 leads, in yeast, to the loss of mtDNA and respiratory growth, providing evidence for its crucial role. On a structural level, the condensing factors usually contain two DNA binding domains called high-mobility group boxes (HMG boxes). The co-operating mechanical activities of these domains are crucial in establishing the nucleoid architecture by bending the DNA strands. Here we used advanced solution NMR spectroscopy methods to characterize the dynamical properties of Abf2 together with its interaction with DNA. We find that the two HMG-domains react notably different to external cues like temperature and salt, indicating distinct functional properties. Biophysical characterizations show the pronounced difference of these domains upon DNA-binding, suggesting a refined picture of the Abf2 functional cycle.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/química , DNA Mitocondrial/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Gene ; 883: 147684, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37536398

RESUMO

Dominant genetic variants in the mitofusin 2 (MFN2) gene lead to Charcot-Marie-Tooth type 2A (CMT2A), a neurodegenerative disease caused by genetic defects that directly damage axons. In this study, we reported a proband with a pathogenic variant in the GTPase domain of MFN2, c.494A > G (p.His165Arg). To date, at least 184 distinct MFN2 variants identified in 944 independent probands have been reported in 131 references. However, the field of medical genetics has long been challenged by how genetic variation in the MFN2 gene is associated with disease phenotypes. Here, by collating the MFN2 variant data and patient clinical information from Leiden Open Variant Database 3.0, NCBI clinvar database, and available related references in PubMed, we determined the mutation frequency, age of onset, sex ratio, and geographical distribution. Furthermore, the results of an analysis examining the relationship between variants and phenotypes from multiple genetic perspectives indicated that insertion and deletions (indels), copy number variants (CNVs), duplication variants, and nonsense mutations in single nucleotide variants (SNVs) tend to be pathogenic, and the results emphasized the importance of the GTPase domain to the structure and function of MFN2. Overall, three reliable classification methods of MFN2 genotype-phenotype associations provide insights into the prediction of CMT2A disease severity. Of course, there are still many MFN2 variants that have not been given clear clinical significance, which requires clinicians to make more accurate clinical diagnoses.


Assuntos
Doença de Charcot-Marie-Tooth , Doenças Neurodegenerativas , Humanos , Mutação , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , GTP Fosfo-Hidrolases/genética , Estudos de Associação Genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/química
10.
Biol Chem ; 404(8-9): 807-812, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37155927

RESUMO

Most mitochondrial proteins are nuclear-encoded and imported by the protein import machinery based on specific targeting signals. The proteins that carry an amino-terminal targeting signal (presequence) are imported via the presequence import pathway that involves the translocases of the outer and inner membranes - TOM and TIM23 complexes. In this article, we discuss how mitochondrial matrix and inner membrane precursor proteins are imported along the presequence pathway in Saccharomyces cerevisiae with a focus on the dynamics of the TIM23 complex, and further update with some of the key findings that advanced the field in the last few years.


Assuntos
Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais , Transporte Proteico , Saccharomyces cerevisiae , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo
11.
ACS Chem Neurosci ; 14(11): 2134-2145, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37194187

RESUMO

The V57E pathological variant of the mitochondrial coiled-coil-helix-coiled-coil-helix domain-containing protein 10 (CHCHD10) plays a role in frontotemporal dementia. The wild-type and V57E mutant CHCHD10 proteins contain intrinsically disordered regions, and therefore, these regions hampered structural characterization of these proteins using conventional experimental tools. For the first time in the literature, we represent that the V57E mutation is pathogenic to mitochondria as it increases mitochondrial superoxide and impairs mitochondrial respiration. In addition, we represent here the structural ensemble properties of the V57E mutant CHCHD10 and describe the impacts of V57E mutation on the structural ensembles of wild-type CHCHD10 in aqueous solution. We conducted experimental and computational studies for this research. Namely, MitoSOX Red staining and Seahorse Mito Stress experiments, atomic force microscopy measurements, bioinformatics, homology modeling, and multiple-run molecular dynamics simulation computational studies were conducted. Our experiments show that the V57E mutation results in mitochondrial dysfunction, and our computational studies present that the structural ensemble properties of wild-type CHCHD10 are impacted by the frontotemporal dementia-associated V57E genetic mutation.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Humanos , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Proteínas Mitocondriais/química , Mitocôndrias/metabolismo , Mutação/genética , Esclerose Amiotrófica Lateral/metabolismo
12.
Science ; 379(6637): 1105-1111, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36758104

RESUMO

Tight regulation of apoptosis is essential for metazoan development and prevents diseases such as cancer and neurodegeneration. Caspase activation is central to apoptosis, and inhibitor of apoptosis proteins (IAPs) are the principal actors that restrain caspase activity and are therefore attractive therapeutic targets. IAPs, in turn, are regulated by mitochondria-derived proapoptotic factors such as SMAC and HTRA2. Through a series of cryo-electron microscopy structures of full-length human baculoviral IAP repeat-containing protein 6 (BIRC6) bound to SMAC, caspases, and HTRA2, we provide a molecular understanding for BIRC6-mediated caspase inhibition and its release by SMAC. The architecture of BIRC6, together with near-irreversible binding of SMAC, elucidates how the IAP inhibitor SMAC can effectively control a processive ubiquitin ligase to respond to apoptotic stimuli.


Assuntos
Proteínas Reguladoras de Apoptose , Apoptose , Caspases , Proteínas Inibidoras de Apoptose , Proteínas Mitocondriais , Animais , Humanos , Caspases/química , Caspases/metabolismo , Microscopia Crioeletrônica , Ativação Enzimática , Serina Peptidase 2 de Requerimento de Alta Temperatura A/química , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Proteínas Inibidoras de Apoptose/química , Proteínas Inibidoras de Apoptose/metabolismo , Domínios Proteicos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo
13.
Science ; 379(6637): 1117-1123, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36758105

RESUMO

Inhibitor of apoptosis proteins (IAPs) bind to pro-apoptotic proteases, keeping them inactive and preventing cell death. The atypical ubiquitin ligase BIRC6 is the only essential IAP, additionally functioning as a suppressor of autophagy. We performed a structure-function analysis of BIRC6 in complex with caspase-9, HTRA2, SMAC, and LC3B, which are critical apoptosis and autophagy proteins. Cryo-electron microscopy structures showed that BIRC6 forms a megadalton crescent shape that arcs around a spacious cavity containing receptor sites for client proteins. Multivalent binding of SMAC obstructs client binding, impeding ubiquitination of both autophagy and apoptotic substrates. On the basis of these data, we discuss how the BIRC6/SMAC complex can act as a stress-induced hub to regulate apoptosis and autophagy drivers.


Assuntos
Proteínas Reguladoras de Apoptose , Apoptose , Proteínas Inibidoras de Apoptose , Proteínas Mitocondriais , Humanos , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Microscopia Crioeletrônica , Proteínas Inibidoras de Apoptose/química , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Ubiquitinação , Multimerização Proteica , Serina Peptidase 2 de Requerimento de Alta Temperatura A/química , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo
14.
Cell Chem Biol ; 30(3): 278-294.e11, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36827981

RESUMO

Mitochondrial fission is critical for mitochondrial dynamics and homeostasis. The dynamin superfamily GTPase DRP1 is recruited by three functionally redundant receptors, MFF, MiD49, and MiD51, to mitochondria to drive fission. Here, we exploit high-content live-cell imaging to screen for mitochondrial fission inhibitors and have developed a covalent compound, mitochondrial division inhibitor (MIDI). MIDI treatment potently blocks mitochondrial fragmentation induced by mitochondrial toxins and restores mitochondrial morphology in fusion-defective cells carrying pathogenic mitofusin and OPA1 mutations. Mechanistically, MIDI does not affect DRP1 tetramerization nor DRP1 GTPase activity but does block DRP1 recruitment to mitochondria. Subsequent biochemical and cellular characterizations reveal an unexpected mechanism that MIDI targets DRP1 interaction with multiple receptors via covalent interaction with DRP1-C367. Taken together, beyond developing a potent mitochondrial fission inhibitor that profoundly impacts mitochondrial morphogenesis, our study establishes proof of concept for developing protein-protein interaction inhibitors targeting DRP1.


Assuntos
Dinaminas , Dinâmica Mitocondrial , Dinaminas/genética , Dinaminas/química , Mitocôndrias , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/química
15.
Proteins ; 91(6): 739-749, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36625206

RESUMO

The G66V pathological variant of the coiled-coil-helix-coiled-coil-helix domain-containing protein 10 (CHCHD10), mitochondrial, plays a role in Jokela type spinal muscular atrophy. The wild-type and G66V mutant-type CHCHD10 proteins contain intrinsically disordered regions, and therefore, their structural ensemble studies have been experiencing difficulties using conventional tools. Here, we show our results regarding the first characterization of the structural ensemble characteristics of the G66V mutant form of CHCHD10 and the first comparison of these characteristics with the structural ensemble properties of wild-type CHCHD10. We find that the structural properties, potential of mean force surfaces, and principal component analysis show stark differences between these two proteins. These results are important for a better pathology, biochemistry and structural biology understanding of CHCHD10 and its G66V genetic variant and it is likely that these reported structural properties are important for designing more efficient treatments for the Jokela type of spinal muscular atrophy disease.


Assuntos
Proteínas Mitocondriais , Atrofia Muscular Espinal , Humanos , Proteínas Mitocondriais/química , Mutação , Mitocôndrias/genética , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Células HeLa
16.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674445

RESUMO

Abnormal functions of the cell adhesion molecule L1 are linked to several neural diseases. Proteolytic L1 fragments were reported to interact with nuclear and mitochondrial proteins to regulate events in the developing and the adult nervous system. Recently, we identified a 55 kDa L1 fragment (L1-55) that interacts with methyl CpG binding protein 2 (MeCP2) and heterochromatin protein 1 (HP1) via the KDET motif. We now show that L1-55 also interacts with histone H1.4 (HistH1e) via this motif. Moreover, we show that this motif binds to NADH dehydrogenase ubiquinone flavoprotein 2 (NDUFV2), splicing factor proline/glutamine-rich (SFPQ), the non-POU domain containing octamer-binding protein (NonO), paraspeckle component 1 (PSPC1), WD-repeat protein 5 (WDR5), heat shock cognate protein 71 kDa (Hsc70), and synaptotagmin 1 (SYT1). Furthermore, applications of HistH1e, NDUFV2, SFPQ, NonO, PSPC1, WDR5, Hsc70, or SYT1 siRNAs or a cell-penetrating KDET-carrying peptide decrease L1-dependent neurite outgrowth and the survival of cultured neurons. These findings indicate that L1's KDET motif binds to an unexpectedly large number of molecules that are essential for nervous system-related functions, such as neurite outgrowth and neuronal survival. In summary, L1 interacts with cytoplasmic, nuclear and mitochondrial proteins to regulate development and, in adults, the formation, maintenance, and flexibility of neural functions.


Assuntos
Proteínas Mitocondriais , Molécula L1 de Adesão de Célula Nervosa , Citoplasma/metabolismo , Citosol/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Molécula L1 de Adesão de Célula Nervosa/química , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neuritos/metabolismo , Neurônios/metabolismo , Humanos , Camundongos , Animais
17.
J Biol Chem ; 299(2): 102825, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36567017

RESUMO

Long noncoding RNAs (lncRNAs) are emerging as essential players in multiple biological processes. Mitochondrial dynamics, comprising the continuous cycle of fission and fusion, are required for healthy mitochondria that function properly. Despite long-term recognition of its significance in cell-fate control, the mechanism underlying mitochondrial fusion is not completely understood, particularly regarding the involvement of lncRNAs. Here, we show that the lncRNA HITT (HIF-1α inhibitor at translation level) can specifically localize in mitochondria. Cells expressing higher levels of HITT contain fragmented mitochondria. Conversely, we show that HITT knockdown cells have more tubular mitochondria than is present in control cells. Mechanistically, we demonstrate HITT directly binds mitofusin-2 (MFN2), a core component that mediates mitochondrial outer membrane fusion, by the in vitro RNA pull-down and UV-cross-linking RNA-IP assays. In doing so, we found HITT disturbs MFN2 homotypic or heterotypic complex formation, attenuating mitochondrial fusion. Under stress conditions, such as ultraviolet radiation, we in addition show HITT stability increases as a consequence of MiR-205 downregulation, inhibiting MFN2-mediated fusion and leading to apoptosis. Overall, our data provide significant insights into the roles of organelle (mitochondria)-specific resident lncRNAs in regulating mitochondrial fusion and also reveal how such a mechanism controls cellular sensitivity to UV radiation-induced apoptosis.


Assuntos
GTP Fosfo-Hidrolases , Mitocôndrias , Dinâmica Mitocondrial , Proteínas Mitocondriais , Complexos Multiproteicos , RNA Longo não Codificante , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Dinâmica Mitocondrial/efeitos da radiação , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Raios Ultravioleta , MicroRNAs/metabolismo , Apoptose/efeitos da radiação , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Membranas Mitocondriais/metabolismo
18.
Biomol NMR Assign ; 17(1): 17-22, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36520264

RESUMO

CISD3 is a mitochondrial protein that contains two [2Fe-2S] clusters. This protein is overexpressed in some types of cancer, so it has emerged as a potential drug target. A detailed characterization of this protein is crucial to understand how CISD3 is involved in these physiopathologies. In this study, isotopically labeled human CISD3 was expressed in Escherichia coli. A set of double and triple resonance experiments performed with standard parameters/datasets provided the assignment of 40% of the HN resonances, 47% of Cα, and 46% of C' resonances. Tailored paramagnetic HSQC, CON and CACO experiments extended up to 59% for HN, 70% for Cα and 69% for C'. The 1H, 13C and 15N NMR chemical shift assignment of human CISD3 is reported here.


Assuntos
Proteínas Ferro-Enxofre , Humanos , Proteínas Ferro-Enxofre/química , Ressonância Magnética Nuclear Biomolecular , Espectroscopia de Ressonância Magnética , Escherichia coli/metabolismo , Proteínas Mitocondriais/química
19.
Nature ; 614(7946): 175-181, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36482135

RESUMO

Mitochondrial ribosomes (mitoribosomes) synthesize proteins encoded within the mitochondrial genome that are assembled into oxidative phosphorylation complexes. Thus, mitoribosome biogenesis is essential for ATP production and cellular metabolism1. Here we used cryo-electron microscopy to determine nine structures of native yeast and human mitoribosomal small subunit assembly intermediates, illuminating the mechanistic basis for how GTPases are used to control early steps of decoding centre formation, how initial rRNA folding and processing events are mediated, and how mitoribosomal proteins have active roles during assembly. Furthermore, this series of intermediates from two species with divergent mitoribosomal architecture uncovers both conserved principles and species-specific adaptations that govern the maturation of mitoribosomal small subunits in eukaryotes. By revealing the dynamic interplay between assembly factors, mitoribosomal proteins and rRNA that are required to generate functional subunits, our structural analysis provides a vignette for how molecular complexity and diversity can evolve in large ribonucleoprotein assemblies.


Assuntos
Microscopia Crioeletrônica , Ribossomos Mitocondriais , Ribonucleoproteínas , Subunidades Ribossômicas Menores , Saccharomyces cerevisiae , Humanos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/ultraestrutura , Ribossomos Mitocondriais/química , Ribossomos Mitocondriais/metabolismo , Ribossomos Mitocondriais/ultraestrutura , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , RNA Ribossômico , GTP Fosfo-Hidrolases , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestrutura , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/ultraestrutura , Subunidades Ribossômicas Menores/química , Subunidades Ribossômicas Menores/metabolismo , Subunidades Ribossômicas Menores/ultraestrutura
20.
J Inorg Biochem ; 239: 112089, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36502664

RESUMO

CISD3 is a mitochondrial protein belonging to the NEET proteins family, bearing two [Fe2S2] clusters coordinated by CDGSH domains. At variance with the other proteins of the NEET family, very little is known about its structure-function relationships. NMR is the only technique to obtain information at the atomic level in solution on the residues involved in intermolecular interactions; however, in paramagnetic proteins this is limited by the broadening of signals of residues around the paramagnetic center. Tailored experiments can revive signals of the cluster surrounding; however, signals identification without specific residue assignment remains useless. Here, we show how paramagnetic relaxation can drive the signal assignment of residues in the proximity of the paramagnetic center(s). This allowed us to identify the potential key players of the biological function of the CISD3 protein.


Assuntos
Proteínas Ferro-Enxofre , Imageamento por Ressonância Magnética , Humanos , Sítios de Ligação , Proteínas Ferro-Enxofre/química , Ligantes , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Proteínas Mitocondriais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA